STANDARD OPERATING PROCEDURE 15.OPS.04 ## OPERATION OF ALPHA-BETA COUNTER #### 1.0 OBJECTIVE To define general and specific methods and procedures for conducting sample analysis for detection of alpha and beta radiation using the Ludlum 3030 alpha-beta tray counter in support of radioactive material disposal operations at the Clean Harbors Deer Trail (CHDT) landfill. #### 2.0 SCOPE This SOP covers the operation of the Ludlum 3030 Alpha Beta Counter, quality control of the analysis, and calculation of instrument MDA. Release criteria for removable contamination are defined in SOP 15.OPS.13, Equipment and Vehicle Release Surveys and several additional survey SOPs. ## 3.0 POLICY Radiation surveys for removable radioactive material shall be conducted by trained CHDT staff to verify that exposure from radioactive materials to CHDT workers and the public is kept as low as reasonable achievable ALARA. Surveys will also ensure CHDT compliance with License requirements and State and Federal regulations. Use of the 3030 Alpha Beta counter will be in compliance with this SOP. #### 4.0 RESPONSIBILITIES Responsibilities of the CHDT Radiation Safety Officer (RSO), management, and staff are defined in the CHDT Radiation Protection Plan. #### 5.0 GENERAL METHODS FOR ALPHA-BETA SAMPLE ANALYSIS ## 5.1 General Discussion Surface contamination samples shall be collected on two inch diameter filter media and counted with the Ludlum Model 3030 Alpha Beta Scaler using the following procedure: - Verify that the Ludlum Model 3030 has power and is ready to count samples - Perform the quality control (QC) daily check as described in the instrument manual. With the system in automatic mode, a QC check will be automatically required every 24 hours, and the instrument will be inoperable in the absence of a satisfactory QC check. - Change the count time dial to 5 minutes, and depress the "QC" button on the unit to start the instrument's automatic daily QC routine. The first required measurement is alpha, which will require the thorium-230 (²³⁰Th) source. - After satisfactory completion of the 230Th measurement, the display will indicate that a beta source measurement is required. A technicium-99 (⁹⁹Tc) source should be used for another 5-minute count. • After satisfactory completion of the ⁹⁹Tc measurement, a 20-minute background measurement is required. - Set the "background subtract" mode to subtract background for alpha and beta radiation. - For measurements of smears, the count time dial should be set to 1-minute, or as directed by the CHDT RSO. The measurement will be logged, and should be recorded on the appropriate form. - If smear results are elevated, bias from radon progeny may be a factor. Allow 5 to 10 minutes of decay time for the smear and conduct a recount. If the count results remain in excess of the survey limit, notify the individual performing the survey and the CHDT RSO. - Determine if the sample is less than the survey limits defined for the specific survey being conducted. Radioactivity limits are described in the appropriate SOPs. Note that the sum of fractions rule is used to determine overall compliance for alpha and beta emitting radionuclides. - Using the PC based software, details for each sample count for later reference and analysis may be recorded if necessary. ## 5.2 Data Download On a weekly basis, the data logged on each counter must be downloaded. The memory has a limit of 600 measurements, and measurements collected after the memory is full will not be logged. The laboratory desktop computer will be the primary location for downloading data. To download data, attach the serial cable to the back of the 3030 unit, attach it to a USB port on the computer using the serial-to-USB converter, and double-click on the Ludlum 3030 software. Click on the Data Logging tab, and the "Get Samples" button – the data will download from the unit, with a progress bar at the bottom of the window. A numerical count will also appear on the 3030 display. Following complete download, click the "Save Samples" button and save the file in the folder for that instrument with the filename in the following format: "XXXXXX MMDDYY Download" – where XXXXXX is the six-digit serial number and MMDDYY is the date (without spaces, dashes, or slashes). The file will save as a text/Excel spreadsheet. Double-click on the data file to confirm that it has been completely saved. Once confirmed that the data are complete, click on the "Clear Samples" button in the 3030 software to clear the 3030 memory. ## 6.0 QUALITY CONTROL AND MDA CALCULATION # **6.1** Quality Control Quality control (QC) measurements will be collected on a daily basis. The 3030 has a built-in feature that requires a QC measurement every 24-hour period. Checks will be performed with plated alpha (²³⁰Th) and beta (⁹⁹Tc) sources that are National Institute of Standards and Technology (NIST)-traceable. The QC tolerances will be set at +/- 15%. If the daily QC check fails, the instrument will not be used and will be taken out of service until the RSO is able to determine a cause. ## **6.2** Minimum Detectable Concentration The minimum detectable concentration (MDC) (or minimum detectable activity [MDA]) of the instrument should be known prior to its use to verify that the measurement sensitivity is sufficient for the application. The Ludlum 3030 uses a software routine to calculate the MDC, or it may be calculated manually. The MDC for a static measurement when background and sample count times are the same may be calculated using the following equation from Abelquist 2001: $$Static MDC \left(\frac{dpm}{100 cm^{2}} \right) = \frac{3 + 4.65 \sqrt{C_{B}}}{\varepsilon_{S} \varepsilon_{i} \left(\frac{A}{100} \right) T}$$ Where: C_B = background counts in time T T = time period over which counts were recorded, in minutes (for one-minute counts, this value is 1) ε_s = surface efficiency; values default to 1.0 for alpha and beta if no other information is available ε_i = instrument efficiency; values default to 0.39 for alpha and 0.29 for beta if no other information is available A =the physical (or "active") probe area in cm² The static measurement MDC when background and sample counting times are different may be calculated using the following equation: $$Static MDC \left(\frac{dpm}{100 cm^{2}} \right) = \frac{3 + 3.29 \sqrt{R_{B} T_{S+B} \left(1 + \frac{T_{S+B}}{T_{B}} \right)}}{\varepsilon_{S} \varepsilon_{i} \left(\frac{A}{100} \right) T_{S+B}}$$ Where: R_B = background count rate, cpm T_B = background count time, minutes T_{S+B} = sample count time, minutes ε_s = surface efficiency; values default to 1.0 for alpha and beta if no other information is available ε_i = instrument efficiency; values default to 0.39 for alpha and 0.29 for beta if no other information is available A = the physical (or "active") probe area in cm² The equation used by the Ludlum 3030 to calculate the MDC automatically is as follows: $$MDC \triangleleft pm = \frac{2.71 + CL * \sqrt{R_B \times T_{S+B} \times \left(1 + \frac{T_{S+B}}{T_B}\right)}}{E \times T_{S+B}}$$ Where: CL = Confidence Level; for 95% CL = 3.290 E = Overall instrument efficiency As there is little difference between the results of the two calculations, either equation can be used when manually calculating the MDC. ## 7.0 REFERENCES Abelquist, 2001. *Decommissioning Health Physics: A Handbook for MARSSIM Users*, Institute of Physics Publishing, Philadelphia, Pennsylvania. Ludlum Measurements, Inc., Instruction Manual Model 3030 Alpha Beta Sample Counter Meter, Current Version.